
Lecture 08:
Machine Learning System for

Training and Inference

2

Some Notes
● Lab1 grade will post tomorrow.
● Lab3 will post this Tomorrow.
● Midterm coverage is released next week.
● Project proposal due next week.

○ Discussion board has built on Brightspace.

3

Recap
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Federated Learning

4

Topics
● Federated Learning (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Speculative Decoding

5

Federated Learning Problems: Heterogeneity

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

DNN mapping

Cloud

Compete
DNN model

User
devices

● End devices will have heterogeneous
system configuration.

● HeteroFL partitions and assigns the
DNN based on the processing power
of each device.

● Each device only train a subset of the
DNN model.

6

HeteroFL

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

● Each edge device will be assigned with
part of the neural network to perform local
training based on its computational
complexity.

7

Federated Learning Problems:
Communication

Luping, W.; Wei, W.; and Bo, L. 2019. Cmfl: Mitigating communication overhead for federated learning. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), 954–964. IEEE.

● uj denotes the sign of the model weight after local updates.
● Our solution dynamically identifies relevant local updates and excludes

those irrelevant from being.
● Only the local device with high relevance will transmit their weight to the

central server.

8

FedMARL

● Our objective is to maximize the accuracy of the global model while minimizing the total processing latency
and communication cost.

● w1,w2,w3 are the importance of the objectives controlled by the FL application designers.
● The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL

problem.

Final model
Accuray

Total Training
Latency Total Bandwidth

Client
Selection

9

FedMARL

● Every random dropping is better than FedAvg.
● FedMarl is much better than random dropping and FedAvg.

10

Topics
● Federated Learning (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Speculative Decoding

11

Distributed DNN Training: Data Parallelism
● To train DNN in a distributed fashion, we need to batchify the training datasets.
● Assume a batch size of b∈B, x denotes a batch of training dataset.
● Let η represent the learning rate. wt represents the weight at t.
● The distributed training process will be similar to the federated learning. Excepted that

the data will be distributed in an independent and identically distributed (IID) fashion.

Loss function Weight update

12

Parameter Server
● A parameter server is a distributed system used to manage and synchronize the

parameters (weights) of a machine learning model during training, especially in
large-scale and distributed training scenarios.

64 64

64 64

A total batch size of 256

Step 1

64 64

64 64

Step 2

Weight
update

Weight
update

Weight
update

Weight
update

Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 11th USENIX Symposium on
operating systems design and implementation (OSDI 14). 2014.

13

Parameter Server
Step 3

Aggregate

Step 4

● Total amount of communication: 2(N-1)G.
● N is the number of nodes, G is the size of the weight gradient.
● If a worker node fails, other nodes can continue training without significant disruption. But PS

scheme is not scalable, the central node can not handle all the servers, as the number of
nodes increases.

14

All Reduce
● All-reduce is a communication operation widely used in distributed deep neural

network (DNN) training to synchronize and aggregate data across multiple
computing nodes or devices.

● Detailed training steps:
○ Forward Pass: Each node (e.g., GPU) computes the forward pass of the neural network

independently using its local mini-batch of data.
○ Backward Pass: Each node computes the gradients of the loss with respect to the model

parameters.
○ All-Reduce Step: The gradients from all nodes are summed together using the all-reduce

operation. This summed gradient is then broadcast to all nodes.
○ Parameter Update: Each node updates its local copy of the model parameters using the

aggregated gradients.

15

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4

Layer 4

Layer 3

Layer 2

Layer 1

● Assume a neural network with four layers.
● Each node has been assigned with an

equivalent amount of training dataset.

16

Ring All-Reduce

● Nodes are arranged in a ring topology, and each
node passes a portion of its data to its neighbor
in a circular fashion. This continues until all
nodes have the complete reduced data.

● Each node has identical amounts of workload.

Node 1 Node 2 Node 3 Node 4

17

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

18

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4

● The end of share-reduce
phase.

19

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

The end of reduce-only phase

20

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

● Total amount of communication: 2(N-1)G.
● N is the number of nodes, G is the size of the weight gradient.

21

Communication Reduction for Distributed Training

Lin, Yujun, et al. "Deep gradient compression: Reducing the communication bandwidth for distributed training." arXiv
preprint arXiv:1712.01887 (2017).

● We reduce the communication bandwidth by sending only the important gradients (magnitude
> thres).

● The accumulated weight gradient of each layer is transmitted only when its value is larger
than a threshold.

22

Communication Reduction for Distributed Training

● The gradient is collected locally, only
gradient with high magnitude are sent
to the central server for model
updating.

● Run-length encoding is utilized to
compress the sparse gradient.

23

Distributed DNN Training: Model Parallelism

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

● The naive model parallelism
strategy leads to severe
under-utilization due to the
sequential dependency of the
network.

● GPipe first divides every
mini-batch of size N into M
equal micro-batches, enabling
different accelerators to work
on different micro-batches
simultaneously.

24

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

● In this paper, we propose PipeDream, a system
that uses Pipeline to enable faster DNN training
by combining intra-batch parallelism with
inter-batch parallelization.

25

Topics
● Federated Learning (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Speculative Decoding

26

BranchyNet
● Data samples are not equal in

their recognition difficulties.

● For the easy samples, they only
needs to be processed with a
few layers before generating the
correct results.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from
deep neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

27

BranchyNet
● During Inference, a confidence score is computed at each

exit point, if greater than a predefined threshold, then the
output is computed locally, leading to a faster inference.

● The confidence score is defined as:

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep
neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

28

BranchyNet
● To train the Branchy-style DNN, we can sum the cross-entropy loss at each local exit

points, and train them jointly.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep
neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

Layer 4

Layer 3

Layer 2

Layer 1

Loss
w1 w2

w3

w4

29

Distributed Deep Neural Networks over the
Cloud, the Edge and End Devices

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH
Computer Architecture News 45.1 (2017): 615-629.

● We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies,
consisting of the cloud, the edge (fog) and end devices.

30

DDNN
● Each edge device is implemented

with a local DNN for local inference.

● The results from each local DNN is
first aggregated locally.

● If the local exit is not confident, the
activation output after the last
convolutional layer from each end
device is sent to the cloud aggregator
for further processing.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH
Computer Architecture News 45.1 (2017): 615-629.

31

ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

Processing time for VGG16

● Earlier layers take much longer to process than the later layers.

32

ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

● In channelwise partition, each node
needs to exchange their partially
accumulated output feature maps to
produce final output feature maps,
which leads to a significant
communication overhead.

ifmaps ofmapsFilter 1

...

...

...

...

...

C/2

C/2

...
...

K/2

K/2

Filter K

W

H
R

U

N

M

Device 1

Device 2

Convolution

33

ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

● The input will partitioned in
spatial dimension and
distribute over multiple
devices.

● The weight will duplicate and
save on each device.

ifmaps

...
...

C/2

C/2

W

H
...

...Device B

W/2
H/2

...
...Device A

W/2
H/2

...
...Device C

W/2
H/2

...
...Device D

W/2
H/2

Weight

Weight

Weight

Weight

...
...

W/2
H/2

...
...

W/2
H/2

...
...

W/2
H/2

...
...

W/2
H/2

ifmaps ofmaps

34

ADCNN
ifmap

A B

DC

data halo

A B

DC

A B

DC
Data halo transmission among tiles

0.2

0.6

0.9

0.2

0.6

0.4 0.3

0.4 0.3

0.9

(c)(b)(a)

● In spatial partition, each tile needs to transmit their data halo in order to compute the correct result.

35

ADCNN
A B

DC

Normal Spatial Partition

0.2

0.6

0.9

0.2

0.6

0.4 0.3

0.4 0.3

0.9

A B

DC

● The cross-tile information transfer can be eliminated by padding the edge pixels with zeros.

0.0

0.0

0.0

0.0 0.0

Fully Decomposable Spatial Partition
(FDSP)

36

ADCNN

Progressive
Retraining

Dog

Original CNN model Output CNN model

Central
node

Edge device cluster

Tiles

Input

...

Step 1 Step 2
...

Conv
node

...

...... ...

Conv
node

...... ...
...

37

Evaluation Results
● We implement ADCNN system with nine

identical Raspberry Pi devices which simulate
the edge devices. Among these nine devices,
eight are used as Conv nodes, and the rest
one is used as the Central node.

● Baselines:
○ Single device scheme
○ Remote cloud scheme

● ADCNN decreases the average processing
latency by 6.68x and 4.42x, respectively.

38

MoDNN

Mao, Jiachen, et al. "Modnn: Local distributed mobile computing system for deep neural network." Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017.

39

Topics
● Federated Learning (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Speculative Decoding

40

Speculative Decoding

…
0

1

1

2

0 1

4

0 32

Large
LLM

Large
LLM

Large
LLM

…
0

1

1

2

Small
LLM

Small
LLM

0 1

4

Small
LLM

0 32

Accurate but slow Fast but inaccurate
Ttot = NTp,1 Ttot = NTp,2

● Speculative decoding enables lossless token generation with low latency.

41

Speculative Decoding

…
0

1

1

2

Draft
LM

Draft
LM

0 1

4

Draft
LM

0 32

Draft
LM

Target
LM

✓✓✓✓✓

5

Draft
LM

10 32 4

…10 32 4

Correct

Ttot = NTp,2 + Tval < NTp,1

NTp,2 Tval

42

Speculative Decoding

● If the amount of tokens that pass the verification is too low, then it is
possible that speculative decoding is slower than autoregressive baseline.

…
0

1

1

2

Draft
LM

Draft
LM

0 1

4

Draft
LM

0 32

✗

Draft
LM

Target
LM

✓✓

3

Draft
LM

10 2

…10 32 4 2

43

Speculative Decoding

● Speculative decoding does not save computation,
but greatly reduce the memory traffic by reducing
the number of memory reads, further reducing the
overall latency.

44

LLM Decoding

● We can simply select the token with the highest score. But better results are achieved if
the model considers other words as well. So a better strategy is to sample a word from
the entire list using the score as the probability of selecting that word.

Decoder

Decoder

Linear &
Softmax

Embedding

good

KV cache

I

“How are you I am doing”

am
doing
good

Decoder

Decoder

Linear &
Softmax

Embedding

well

KV cache

I

“How are you I am doing”

am
doing
well

45

Speculative Decoding

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

● To increase the diversity of the LLM output, a better strategy is to
sample a word from the entire list using the score as the probability of
selecting that word.

● Let p(x), q(x) denote the probability density function specified by the
target and draft LLM

● To sample x ∼ p(x), we instead sample x ∼ q(x), keeping it if q(x) ≤ p(x),
and in case q(x) > p(x) we reject the sample with probability 1− p(x)/q(x)
and sample x again from an adjusted distribution p’(x) = norm(max(0,
p(x) − q(x))) instead.

46

Self-Speculative Decoding

Zhang, Jun, et al. "Draft & verify: Lossless large language model acceleration via self-speculative decoding." arXiv preprint
arXiv:2309.08168 (2023).
Elhoushi, Mostafa, et al. "Layer skip: Enabling early exit inference and self-speculative decoding." arXiv preprint
arXiv:2404.16710 (2024).

D
ra

ft
m

od
el

Ve
rif

y
m

od
el

● Self-Speculative decoding the draft model is
a subnetwork of the verify model. All the
intermediate results from the draft model are
reusable.

● No additional network needs to be trained,
except a simple classification layer.

47

SpecInfer

Miao, Xupeng, et al. "SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).

48

SpecInfer

Miao, Xupeng, et al. "SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).

Mq

“New York
University”

“is”

Mq

“New York
University is ”

“a”

“New York University is a
private research university”

… Mq

“private” or
“prestigious”

“New York University
is a”

Mp

✅

“New York University is a
prestigious research university”

or

49

Parallel Speculative Decoding

Liu, Tianyu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. "Parallel speculative decoding with adaptive draft
length." arXiv preprint arXiv:2408.11850 (2024).

● PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify
and post-verify to achieve adaptive draft length.

● The draft model continues to decode during the verification stage.
● If the verification fails, the windows size will become 1 in the next cycle.

50

Medusa

Cai, Tianle, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. "Medusa: Simple llm
inference acceleration framework with multiple decoding heads." arXiv preprint arXiv:2401.10774 (2024).

● Adding extra decoding
heads to predict multiple
subsequent tokens in
parallel.

51

Presentation
● Federated optimization in heterogeneous networks (Rujuta)
● TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning

(Akram)
● Modnn: Local distributed mobile computing system for deep neural network (Archit)
● MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads

(Aryan)
● Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting (Roshan

Nayak)

https://docs.google.com/presentation/d/149vfnNa-Hf2S1JNe_5W3o9UJSlWAckYTazvH0iSK8kA/edit#slide=id.p1
https://docs.google.com/presentation/d/1xWhAp7iRqnhIJmUFR9W9eEzXyseR3vw6u7l4kcv8FXY/edit?usp=sharing
https://docs.google.com/presentation/d/1VoeMpZ76NBanWGUgD-oiIRliedsMeZXumAFvjYWI1lM/edit?usp=sharing
https://docs.google.com/presentation/d/1ZPCr8I8pPyzHhW-crRTQELTd5D8Ugn0tkLyYCbDx0TI/edit?usp=sharing
https://docs.google.com/presentation/d/1naBil7duUIkTLdiXIPffandOFcMi8YVdFD2SzsKI8ic/edit?usp=sharing

